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Introduction

I Most real world problems are plagued by delays in learning.

I Most Reinforcement Learning(RL) algorithms fail to learn anything
substantial due to the presence of delays.

I Thus handling delay in RL is crucial aspects to enable RL to be used in a
variety of real world problems like congestion control, control of robotic
systems, distributed computing, medical domains etc.
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Delays in Reinforcement Learning

I RL algorithms model the environment as a Markov Decision Process (MDP).

I In the presence of delays, one can equivalently model the underlying problem
as partially observable MDP (POMDP).

I POMPDs are generalizations of MDPs, however solving POMDPs without
estimating hidden action states leads to arbitrary sub-optimal policies.
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Types of Delays
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MDP State Augmentation

I In the presence of delays, it becomes imperative to add the delayed
observation with the non-implemented actions to make the states Markov.

I The reformulation allows an MDP with delays to be viewed as an equivalent
MDP without delays.

I The resulting Bellman equation with conditional expectation in the equivalent
cost structure requires vast computational resources for estimation.
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Delay Resolved Algorithms
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Figure: Graphical illustration of the problem with observation and actions delays.
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Delay Resolved Algorithms

I For a delay of d, the time-complexity of computation of the expected cost
scales as O(d|S|2).

I The size of the “augmented” state grows exponentially with d, i.e.,
I = S ×Ad, and thus tabular learning approaches become computationally
prohibitive even for moderately large delays.

I Our algorithm uses neural networks as nonlinear function approximators, the
computational complexity scales as O(|S|+ d|A|).
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Prior Work

I Much of the work on delays in RL was analyzed for constant delays. The
analysis used augmented states, which results in high computational overhead.

I A memory-less method was also introduced which updated the Q values with
the effective action. However for this to work, the exact delay value is needed
and this value should be constant.

I Model based approaches were also developed to predict the underlying
transition probabilities from the delayed transitions. However, learning these
transition dynamics can be tricky.
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Recent Advances

I We can also use forward models for predicting the current undelayed state.
However, learning forward models are slightly more computationally intensive
and can be problematic to learn in complicated environments.

I A recently formalized Real-Time Reinforcement Learning (RTRL), a
deep-learning based framework that incorporates the effect of single-step
action delay.

I Another recent algorithm performs partial trajectory sampling and learning
from them. Their algorithm, known as Delay Correcting Actor Critic
(DCAC), performs reasonably well, however, at the expense of requiring
complete information of the delay values at each step needed for re-sampling.
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Constant Delay MDP

Definition : CDMDP

A CDMDP, denoted by the tuple 〈S,A,PA, r, γ, do, da〉, augments an MDP with
state-space S ×Ado+da . Note that a policy π is defined as a mapping
π : S ×Ado+da → A.

I Information state under observation delay: It = {st−d, at−d, . . . , at−2, at−1}

I Information state under action delay: It = {st, at−d, . . . , at−2, at−1}

I CDMDPs with appropriately chosen information states can be treated as
equivalent MDP without delays
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Stochastic Delay MDP

Definition : SDMDP

A SDMDP, denoted by the tuple 〈S,A,PA, r, γ, do, da, [k], n〉, augments an MDP
with state-space S ×Ado+da × Z+ such that do + da ≤ n− 1. A policy π in
SDMDP is defined as a mapping π : S ×Ado+da × Z+ → A∪ {∅}. Here ∅ represents
no action and corresponds to the scenario when the MDP freezes for the agent.

I Unlike CDMDP, size of information state may vary =⇒ inclusion of no action

I Information state under observation delay: It = {st−d, k, at−d, . . . , at−1, ∅, . . . , ∅}
I Unlike CDMDP, information state also includes the instant k at which the

most recent state st−d was first observed

I Rewards for any unobserved past states are received upon observing the most
recent state

I Agent can make decisions at each instant despite stochastic delays
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Some Key Theoretical Results

Theorem (Equivalence of SDMDP and undelayed MDP)

The SDMDP 〈S,A,PA, r, γ, do, 0, [k], n〉 can be reduced into an equivalent
undelayed MDP 〈I,A,PA, r, γ〉 with simplified cost structure.

Lemma (Equivalence of action and observation delays)

The CDMDPs 〈S,A,PA, r, γ, d, 0〉 and 〈S,A,PA, r, γ, 0, d〉 are functionally
equivalent to the MDP 〈I,A,PA, r, γ〉 with appropriately chosen information state
I.
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Environments and Algorithms

Environments: Gym Environments (Acrobot, CartPole, MountainCar) & W-Maze

Figure: W-Maze

Algorithms used:

I Q/DQN: Baseline algorithm that does not take any information about delays.

I delay-Q/DQN: Memory-less Algorithm using effective action for learning Q
values

I Delayed-DQN: Using Forward Model to predict the current state

I DRQ/DRDQN: Our Algorithm
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Tabular v/s Function Approximation
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Figure: Using Neural Networks to tackle the problem exploding state space: (a) shows the
performance with Tabular Q-learning, whereas (b) uses DQN.
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Action Delays
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Figure: Comparison with Baselines on Gym environments for constant action delays.
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Observation Delays
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Figure: Comparison with Baselines on Gym environments for constant and stochastic
observation delays. DRDQN learns the optimal policy both for constant and stochastic

delays.
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Compute Comparison
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Figure: (a) and (b) show runtimes for DRDQN and Delayed DQN
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Equivalence of action and observation delays
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Figure: Equivalence of Action and Observation Delays
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Conclusion

I We revisit the idea of using augmented states as a solution for delayed RL
problems.

I We formally define both constant and stochastic delays and provide theoretical
analysis on why the reformulation still converges to the same optimal policy.

I We adapt state augmentation methods to constant and stochastic delay
problems, to formulate a class of algorithms, which can perform well on both
constant and random delay tasks.
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Thank You!
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