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Introduction

In Reinforcement Learning, we mainly consider the
environment and the agent to be in sync with each
other. Most Reinforcement Learning(RL) algorithms
fail to learn anything substantial due to the presence
of delays.
In some domains, waiting for the most recent obser-
vation or for the most recent action to get executed
is fine, but in most domains, particularly in real world
scenarios, the environment does not respond well to
such ’waiting’ actions. Thus handling delay in RL is
crucial aspects to enable RL to be used in a variety
of real world problems like congestion control, con-
trol of robotic systems, distributed computing, medi-
cal domains etc.

State Augmentation

RL algorithms model the environment as a Markov
Decision Process (MDP). In the presence of delays,
one can equivalently model the underlying prob-
lem as partially observable MDP (POMDP). POM-
PDs are generalizations of MDPs, however solv-
ing POMDPs without estimating hidden action states
leads to arbitrary sub-optimal policies. In the pres-
ence of delays, it becomes imperative to add the de-
layed observation with the non-implemented actions
to make the states Markov. The reformulation allows
an MDP with delays to be viewed as an equivalent
MDP without delays.
Some Key Points to note:
• We assume the delay value at every time step is
not known to us, thus the number of action we need
to augment is also not known.

• State Augmentation increases the state space ex-
ponentially, so we use a neural network to append
the actions directly to the state, thus making the
state dimension grow linearly with delays.
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The figure is a graphical illustration of how state augmenta-
tion works. An action is computed in every time step, using
the latest known state and a vector of all actions taken since
that state was observed.

Results with Constant Action Delays
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The figure above is a plot of the rewards across varying ac-
tion delays for the CartPole environment. One of the algo-
rithms compared is Delayed DQN (Dalal et al 2021) which
uses forward models to predict the unobserved states com-
ing from the un-implemented actions.
Delayed DQN is very dependent on how good the forward
models learn and if it fails to learn, then it can lead to poor
performance.

Results with Observation Delays
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The figure above shows the comparison with baseline DQN
with both constant and stochastic delays. DRDQN reaches
optimal performance for constant and stochastic delays.

Compute Comparison on Acrobot

DRDQN requires almost similar time as DQN whereas De-
layed DQN with forward models requires more time and the
gap increases for higher delays.
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Conclusion

In the main paper, we formally define both constant and
stochastic delays. We adapt the state augmentation methods
to other domains as well.


